Tag Archives: r statistics

R for Beginners: Installing and Using the R Commander GUI, Part One


A tutorial by D.M. Wiig

This tutorial is posted as an embedded Word document.  To view the document full screen click on the button in the lower right corner of the window. Please note that you must be online for the full page Word document display to work.

R For Beginners: Installing and Using the R Console in a Windows Environment


An R tutorial by D. M. Wiig

This tutorial is posted as an embedded Word document. To view the document full screen click on the icon in the lower-right corner of the document window.

My next post covering installing and using the Rcommander GUI will be out in a day or two.

R-Fiddle R Console and Data Editor: R Collaboration in the Cloud


R-Fiddle is a great tool to develop and test  code segments or complete R programs.   By accessing the R-Fiddle web site users have a fully functioning R console,  code editor and discussion board all in one place.  If a user has code uploaded that has been designated to share,  other users can access the code and make suggestions or additions.  Code can be run with full R support from your web browser.

Try the link below to test out R-Fiddle.  I have uploaded a small program as a demo.  Feel free to share your own projects,  help others or try out code segments.

http://www.r-fiddle.org/#/embed?id=rtOt8yR3

Click in the link above to activate the R editor and R console.

Tutorial: Using R to Analyze NORC GSS Social Science Data, Part Six, R and ANOVA


Tutorial: Using R to Analyze NORC GSS Social Science Data, Part Six, R and ANOVA

A tutorial by Douglas M. Wiig

As discussed in previous segments of this tutorial, for anyone interested in researching social science questions there is a wealth of survey data available through the National Opinion Research Center (NORC) and its associated research universities. The Center has been conducting a national survey each year since 1972 and has compiled a massive database of data from these surveys. Most if not all of these data files can be accessed and downloaded without charge. I have been working with the 2014 edition of the data and for all part of this tutorial will use the GSS2014 data file that is available for download on the Center’s web site. (See the NORC main website at http://www.norc.org/Research/Projects/Pages/general-social-survey.aspx and at http://www3.norc.org/GSS+Website ).

Accessing and loading the NORC GSS2014 data set was discussed in part one of this tutorial. Refer to it if you need specific information on downloading the data set in STATA or SPSS format.  In this segment we will use the subset function to select a desired set of cases from all of the cases in the data file that meet certain criteria.  As indicated in my previous tutorial the GSS2014 data set contains a
total of 2588 cases and 866 variables.

Before starting this segment of the tutorial be sure that the foreign
package is installed and loaded into your R session. As I have indicated in previous tutorials, use of an IDE such as R Studio greatly facilitates entering and debugging R code when doing research such as is discussed in my tutorials.  

Import the GSS 2014 data file in SPSS format and load it into the data frame ‘gss14’ using:
#########################################################import  GSS2014 file in SPSS .sav format
#uses foreign package
########################################################require(foreign)
gss14<- read.spss("/path to your location/GSS2014.sav",                      use.value.labels=TRUE,max.value.labels=Inf, to.data.frame=TRUE)
#################################################

In this tutorial the analysis of this sample will focus on examining the hypothesis “An individual’s outlook on life is influenced by the amount of education the person has attained.” The GSS variables ‘educ’, education in number of years and ‘life’, whether the respondent rated life DULL, ROUTINE, or EXCITING. A simple approach to testing this hypothesis is to compare mean levels of education for each of the three categories of response. I will do this analysis in two stages. In the first stage I will use techniques discussed in a previous tutorial to select a subset of each response category and display the mean education level for each of the three categories.

The three subsets life1, life2, and life3 are generated using the following code:

###################################################
# create 3 subsets from gss14 view on life by years of education
##################################################

life1 <- subset(gss14, life == “DULL”, select=educ)

life2 <- subset(gss14, life ==”ROUTINE”, select=educ)

life3 <- subset(gss14, life == “EXCITING”, select=educ)

###################################################

#The three means of the subsets are displayed using the code:

# run summary statistics for each subgroup

##################################################

summary(life1)

summary(life2)

summary(life3)

###################################################

resulting the following output:
educ
Min. : 0.00
1st Qu.:10.00
Median :12.00
Mean :11.78
3rd Qu.:13.00
Max. :20.00

summary(life2)
educ
Min. : 0.00
1st Qu.:12.00
Median :13.00
Mean :13.22
3rd Qu.:16.00
Max. :20.00
NA’s :1

summary(life3)
educ
Min. : 2.00
1st Qu.:12.00
Median :14.00
Mean :14.31
3rd Qu.:16.00
Max. :20.00

As is seen above there does appear to be a difference among mean years of education and the corresponding outlook on life. In order to examine whether or not these observed differences are not due to chance a simple one-way Analysis of Variance can be generated.

In the next tutorial I will discuss performing the ANOVA and using pair-wise comparisons to determine which if any means are different.

R Tutorial: Using R to Analyze the NORC GSS2014 Database, Selecting Subsets and Comparing Means Using Student’s t Test


R Tutorial Part Three: Selecting Subsets and Comparing Means Using an Independent Sample t Test

A tutorial by Douglas M. Wiig

As discussed in previous segments of this tutorial, for anyone interested in researching social science questions there is a wealth of survey data available through the National Opinion Research Center (NORC) and its associated research universities. The Center has been conducting a national survey each year since 1972 and has compiled a massive database of data from these surveys. Most if not all of these data files can be accessed and downloaded without charge. I have been working with the 2014 edition of the data and for all part of this tutorial will use the GSS2014 data file that is available for download on the Center’s web site. (See the NORC main website at http://www.norc.org/Research/Projects/Pages/general-social-survey.aspx and at http://www3.norc.org/GSS+Website ).

Accessing and loading the NORC GSS2014 data set was discussed in part one of this tutorial. Refer to it if you need specific information on downloading the data set in STATA or SPSS format.  In this segment we will use the subset function to select a desired set of cases from all of the cases in the data file that meet certain criteria.  As indicated in my previous tutorial the GSS2014 data set contains a total of 2588 cases and 866 variables.
Before starting this segment of the tutorial be sure that the foreign package is installed and loaded into your R session.  Import the GSS 2014 data file and load it into the data frame ‘Dataset’ using:

########################################################
#import GSS2014 file in SPSS .sav format
#uses foreign package
########################################################
require(foreign)
Dataset <- read.spss("/path to your location/GSS2014.sav", 
                     use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)

###########################################################

In the previous segment of this tutorial we started to investigate whether or not an individual’s education had an effect on their response to a NORC survey item dealing with abortion. The item asked respondents to either ‘AGREE’ or ‘DISAGREE’ with the statement ‘A women should be allowed to obtain an abortion under any circumstances.’ We selected a subset of all of the respondents who answered ‘AGREE’ and a second subset of all the respondents who answered ‘DISAGREE’ using the following code:

##############################################

#select subset from Dataset and write to data frame SS1

###################################################
SS1 <- subset(Dataset, abany == "YES", select=educ)

View(SS1)

#######################################################

######################################################
#select subset from Dataset and write to data frame SS2
######################################################
SS2 <- subset(Dataset, abany == "NO", select=educ)
View(SS2)

A mean number of years of education can be calculated for each of the subsets using the following:

#calculate descriptive statistics for SS1 and SS2

####################################################

summary(SS1)

summary(SS2)

####################################################

Output from the above for SS1 is:

> summary(SS1)

educ

Min. : 0.0

1st Qu.:12.0

Median :15.0

Mean :14.6

3rd Qu.:16.0

Max. :20.0

Output for SS2 is:

> summary(SS2)

educ

Min. : 0.00

1st Qu.:12.00

Median :12.00

Mean :12.93

3rd Qu.:15.00

Max. :20.00

NA’s :1

As seen above there is a difference in mean years of education for the two subsets. We can use a two independent sample t test to determine whether or not the difference is large enough to not be due to chance.

In this tutorial I will use the Student’s t test function t.test that is found in the stats package. The function is used in the following form:

t.test =(x,y, alternative = c(“two.sided”, “less”, “greater”), mu=0, paired = FALSE, var.equal = FALSE, conf.level = .95)

where x and y = numeric vectors of data values

alternative = specification of a one-tailed or two-tailed test

mu = 0 specification that true difference between means is zero

paired = FALSE specification of a two independent sample test; if TRUE a paired samples test will be used

var.equal = specification of equal variances of the two samples; if TRUE the pooled variance is used otherwise a Welsh approximation of degrees of freedom is used

conf.level = confidence level of the interval

For further information see the documentation in CRAN help files for the function t.test().

Using the vectors selected from the dataset SS1, and SS2 the t test is performed using:

###########################################################

#perform a t test to compare sample means

#########################################################

t.test(SS1,SS2, alternative = c(“two.sided”), mu=0, paired=FALSE, var.equal = TRUE, conf.level = .95)

###########################################################

Resulting in output of:

        Two Sample t-test

data:  SS1 and SS2 
t = 11.1356, df = 1650, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 1.369673 1.955333 
sample estimates:
mean of x mean of y 
 14.59517  12.93267 

We can see that the difference between the mean years of education for the ‘YES’ and the ‘NO’ samples is significant at an alpha level of p=.05. Subsets can also be used to compare means involving more than two samples and using simple one-way Analysis of Variance. This will be covered in the next part of the tutorial.

R Tutorial: Using R with NORC GSS Data Part Two, Generating Simple Tables and Using Subsets


A tutorial by Douglas M. Wiig

Part one of the tutorial  centered on importing NORC GSS data in STATA or SPSS formats in an R data frame. For illustration I used the GSS2014 survey data set that consists of 2538 cases and 866 variables. If a researcher wishes to generate some simple cross tabulations the R CrossTable function is very useful.

The CrossTable function is part of the gmodels package, so before running scripts in this tutorial make sure you have installed and loaded gmodels from your favorite CRAN mirror site. As discussed in part one of the tutorial load the GSS2014 dataset into the global environment using:

>require(foreign)

>Dataset <- read.spss(“E:/research/Documents/GSS2014.sav”,

use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)

The CrossTable function allows a basic cross tabulation to be performed and includes a large number of options that can be incorporated into the table. The basic structure is as follows:

Usage

CrossTable(x, y, digits=3, max.width = 5, expected=FALSE, prop.r=TRUE, prop.c=TRUE,

prop.t=TRUE, prop.chisq=TRUE, chisq = FALSE, fisher=FALSE, mcnemar=FALSE,

resid=FALSE, sresid=FALSE, asresid=FALSE,

missing.include=FALSE,

format=c(“SAS”,”SPSS”), dnn = NULL, …)

Arguments

x A vector or a matrix. If y is specified, x must be a vector

y A vector in a matrix or a dataframe

digits Number of digits after the decimal point for cell proportions

max.width In the case of a 1 x n table, the default will be to print the output horizontally.

If the number of columns exceeds max.width, the table will be wrapped for

each successive increment of max.width columns. If you want a single column

vertical table, set max.width to 1

expected If TRUE, chisq will be set to TRUE and expected cell counts from the _2 will be

included

prop.r If TRUE, row proportions will be included

prop.c If TRUE, column proportions will be included

prop.t If TRUE, table proportions will be included

prop.chisq If TRUE, chi-square contribution of each cell will be included

chisq If TRUE, the results of a chi-square test will be included

fisher If TRUE, the results of a Fisher Exact test will be included

mcnemar If TRUE, the results of a McNemar test will be included

resid If TRUE, residual (Pearson) will be included

sresid If TRUE, standardized residual will be included

asresid If TRUE, adjusted standardized residual will be included

missing.include

If TRUE, then remove any unused factor levels

format Either SAS (default) or SPSS, depending on the type of output desired.

dnn the names to be given to the dimensions in the result (the dimnames names).

optional arguments

(Gregory Warnes, maintainer, Package ‘Gmodels’ February, 2015. http://cran.r-project.org/src/contrib/PACKAGES.html)

In this tutorial I will create a  table to examine the relationship between income and education using the variables ‘degree’ and ‘income6’ from the GSS dataset. Both are categorical factors. To simplify the resulting table only actual frequencies will be reported and the ‘chisq’ option will be used to generate a chi-squared test. The format used will be set to SPSS. Use the following statement:

>Generate a cross table of frequencies with chisq reported

>CrossTable(Dataset$”incom16″,Dataset$”degree”, chisq=TRUE, format=c(“SPSS”),prop.r=FALSE, prop.c=FALSE, prop.t=FALSE, prop.chisq=FALSE)

>

In the above code, the row variable is income the appropriate column of the dataset is selected with the ‘Dataset$”incom16” statement. The column variable for the table is education and the appropriate column of the dataset is selected with the ‘Dataset$”degree” statement. The various cell proportions must be set to ‘FALSE’ as they are defaulted to ‘True.’

When you run the above script the table will be generated in SPSS format on the screen.  I will not reproduce the table here because of formatting problems of fitting the table into the blog format.

In part three of this turorial I will discuss generating subsets of the GSS data file and using subsets for statistical analyses such as t tests and ANOVA.


	

Using R in Nonparametric Statistical Analysis, The Kruskal-Wallis Test Part Three: Post Hoc Pairwise Multiple Comparison Analysis of Ranked Means


Using the Kruskal-Wallis Test, Part Three:  Post Hoc Pairwise Multiple Comparison Analysis of Ranked Means

A tutorial by Douglas M. Wiig

In previous tutorials I discussed an example of entering data into a data frame and performing a nonparametric Kruskal-Wallis test to determine if there were differences in the authoritarian scores of three different groups of educators. The test statistic indicated that at least one of the groups(group 1) was significantly different from the other two.

In order to explore the difference further it common practice to do post hoc analysis of the differences. There are a number of methods that have been devised to do these comparisons, but one of the most straightforward and easiest to understand is pairwise comparison of ranked means(or means if using standard ANOVA.)

Prior to entering the code for this section be sure that the following packages are installed and loaded:

       PMCMR

   prirmess

In part one data was entered into the R editor to create a data frame. Data frames can also be created directly using R script. The script to create the data frame for this example uses the following code:

#create data frame from script input

>Group <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3)

>authscore <-c(96,128,83,61,101,82,121,132,135,109,115,149,166,147)

>kruskal <- data.frame(Group, authscore)

The group identifiers are entered and assigned to the variable Group, and the authority scores are assigned to the variable authscore. Notice that each identifier is matched with an appropriate authscore just as they were when entered in columns using the data editor. The vectors are then assigned to the variable kruskal to create a data.frame. Once again the structure of the data frame can be checked using the command:

>str(kruskal)

resulting in:

'data.frame':   14 obs. of  2 variables:
 $ Group    : num  1 1 1 1 1 2 2 2 2 2 ...
 $ authscore: num  96 128 83 61 101 82 121 132 135 109 ...

>

It is often useful to do a visual examination of the ranked means prior to post hoc analysis. This can be easily accomplished using a boxplot to display the 3 groups that are presented in the example. If the data frame created in tutorial one is still in the global environment the boxplot can be generated with the following script:

>#boxplot using authscore and group variables from the data frame created in part one

>boxplot(authscore ~ group, data=kruskal, main=”Group Comparison”, ylab=”authscore”)

>

The resulting boxplot is seen below:

Rplot5

As can be seen in the plot, authority score differences are the greatest between group 1 and 3 with group 2 In between. Use the following code to run the Kruskal-Wallis test and examine if any of the means are significantly different:

#library(PMCMR)

with(kruskal, {

posthoc.kruskal.nemenyi.test(authscore, Group, “Tukey”)

}

The post hoc test used in this example is from the recently released PMCMR R package. For details of this and other post hoc tests contained in the package( see Thorsten Polert, Calculate Pairwise Multiple Comparisons of Mean Rank Sums, 2015. http://cran.r-project.org/web/packages/PMCMR/PMCMR.pdf.) The test employed here used the Tukey method to make pairwise comparisons of the mean rank authoritarianism scores of the three groups. The output from the script above is:

Pairwise comparisons using Tukey and Kramer (Nemenyi) test

with Tukey-Dist approximation for independent samples

data: authscore and Group

      1                    2

2   0.493             –

3    0.031        0.310

P value adjustment method: none

The output above confirms what would be expected from observing the boxplot. The only means that differ significantly are means 1 and 3 with a p = .031.

The PMCMR package will only work with R versions 3.0.x. If using an earlier version of R another package can be used to accomplish the post hoc comparisons. This package is the pgirmess package (see http://cran.r-project.org/web/packages/pgirmess/pgirmess.pdf for complete details). Using the vectors authscore and Group that were created earlier the script for multiple comparison using the pgirmess package is:

library(pgirmess)

authscore <- c(96,128,83,61,101,82,121,132,135,109,115,149,166,147)

Group <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3)

kruskalmc(authscore ~ Group, probs=.05, cont=NULL)

and the output from this script using a significance level of p = .05 is:

Multiple comparison test after Kruskal-Wallis

p.value: 0.05

Comparisons

      obs.dif    critical.dif     difference

1-2    3.0        6.333875         FALSE

1-3    7.1        6.718089         TRUE

2-3    4.1        6.718089        FALSE

>

As noted earlier the comparison between groups one and three is shown to be the only significant difference at the p=.05 level.

Both the PMCMR and the pgirmess packages are useful in producing post hoc comparisons with the Kruskal-Wallis test. It hoped that the series of tutorials discussing nonparametric alternatives common parametric statistical tests has helped demonstrate the utility of these approaches in statistical analysis.

In part four I will post the complete script used in all three tutorials.

Using R for Nonparametric Statistics: The Kruskal-Wallis Test, Part Two


Using R for Nonparametric Statistics:  The Kruskal-Wallis Test, Part Two

A Tutorial by Douglas M. Wiig

Before we can run the Kruskal-Wallis test we need to define which column contains the factors (independent variables) and which contains the authoritarianism scores (dependent variable). Once we define the factor column R will match the correct score to each of the 14 observations.
As set up in the study, ‘Group’ is the factor(independent variable), and ‘authscore’ is the dependent variable. Use the command:

> Group <-factor(1,2,3)

This designates which observation belongs to each group. To make sure the data structure has been set up correctly use the command:

> str(kruskal)
‘data.frame’: 14 obs. of 2 variables:
$ Group : num 1 1 1 1 1 2 2 2 2 2 …
$ authscore: num 96 128 83 61 101 82 124 132 135 109 …
>

The output of this command shows a summary of the structure of the data frame created. We can now run the Kruskal Wallis test with the command:

> kruskal.test(authscore ~ Group, data=kruskal)

The output will be:

Kruskal-Wallis rank sum test

data: authscore by Group
Kruskal-Wallis chi-squared = 6.4057, df = 2, p-value = 0.04065

>

As seen in the above output the analysis of authoritarianism score by group indicates that the probability of differences in scores among the three groups being due to chance alone is less that the .05 alpha level that was set for the study. (pobt < .05). Further post hoc analysis would be necessary to determine the exact nature of the differences among the scores of the three groups. This will be the topic of a future tutorial.

More to come:  Part Three will explore the use of multiple comparison techniques to analyze ranked means

Using R for Nonparametric Analysis: The Kruskal-Wallis Test, Part One


 

Using R for Nonparametric Data Analysis: The Kruskal-Wallis Test

A tutorial by Douglas M. Wiig

Analysis of variance(ANOVA) is a commonly used technique for examining the effect of an independent variable on three or more dependent variables. There are several types of ANOVA ranging from simple one-way ANOVA to the more complex multiple analysis of variance, MANOVA. ANOVA makes several assumptions about the sample data being used such as the assumption of normal distribution of the variables in the parent population, underlying continuous distribution of the variables, and interval or ratio level measurement of all variables. If any of these assumptions cannot be met a researcher can turn to a nonparametric counterpart to ANOVA for the analysis. This tutorial will discuss the use of the Kruskal-Wallis test, the nonparametric counterpart to analysis of variance.

In this tutorial I will explore a simple example and discuss entering the sample data into a data file using the R data editor. I will then discuss setting up the data for analysis and using the Kruskal-Wallis test.

I am going to assume that the reader has a working knowledge of ANOVA with parametric data. Since ANOVA uses sample means and variances as the basis of the statistical test interval or ratio level measurement is necessary to insure valid results in addition to the assumptions indicated above. With the nonparametric Kruskal-Wallis test the only assumptions to be met are ordinal or better measurement and the assumption of an underlying continuous measurement. The example to be used here is taken from a book on nonparametric statistics by Sidney Seigel.(Sidney Seigel, Nonparametric Statistics for the Behavioral Sciences, New York: McGraw-Hill, 1956, pp-184-196).

A researcher wishes to test the hypothesis that school administrators are typically more authoritarian than classroom teachers. He also believes that many classroom teachers are adminstration-oriented in their professional aspirations which may, in turn, have an effect on their authoritarianism. 14 subjects are selected and divided into three groups: teaching-oriented teachers (classroom teachers who wish to remain in a teaching position), administration-oriented teachers (classroom teachers who aspire to become administrators), and practicing administrators.(Seigel, p. 186). The level of authoritarianism of each subject is measured through a survey that assigns an authoritarianism score that is considered to be at least ordinal in nature. Higher scores indicate higher levels of authoritarianism. (Siegel, p. 186). The null hypothesis is that there is no difference in mean authoritarianism scores among the three groups. The alternative hypothesis is that the mean authoritarianism scores among the three groups are different. The alpha level for rejecting the null hypothesis is p = .05. (Seigel, p. 186).

Since we make no assumption about a normal distribution of scores, have a small sample size of n = 14, and ordinal measure we will use the nonparametric test which is based on median scores and ranks rather than means and variances as used in parametric ANOVA. The mathematical details of how this is done is beyond the scope of this tutorial. See Seigel, p. 187-189 for details. The authoritarian scores for the three groups are shown below:

Authoritarianism Scores of Three Groups of Educators

Teacher-Oriented        Admin-oriented    Administrators

teachers   n=5                teachers   n=5                n=4

—————————————————————————————-

96                                  82                               115

128                              124                               149

83                               132                               166

61                               123                               147

101                             109

—————————————————————————————-

(Seigel, p. 187)

The first task is to create an R data frame with the scores from the table. We will enter the scores using the R data editor. We will name the data frame ‘kruskal.’   Invoke the editor using the following commands:

  > kruskal <- data.frame()

   > kruskal <- edit(kruskal)

You should see the data entry editor open in a separate window. In order to process the data properly it needs to be entered into two columns. The first column will be the factors (which group the scores belong to), and the second column will contain the actual scores. Label column 1 ‘Group’ and column 2 ‘authscore.’ When the data are entered your editor should look like this:

———————-

Group  authscore

1    1               96

2    1            128

3    1             83

4    1            61

5    1           101

6    2            82

7    2           121

8    2          132

9    2          135

10   2       109

11   3       115

12   3       149

13   3       166

14   3       147

———————-

Make sure that each column of numbers is of the data type “Real.” l Close the data editor by clicking ‘Quit’ and the data will be saved in the working directory for access. To see what has been entered in the data editor use the command:

> kruskal

Group authscore

1     1             96

2     1            128

3     1             83

4     1            61

5     1           101

6     2            82

7     2           121

8     2            132

9     2            135

10     2         109

11     3         115

12     3         149

13     3         166

>

You should see the output as above. If you need to make changes simple invoke the editor with:

> kruskal <-edit(kruskal)

The editor will open and you can make any changes you need to. Be sure to click on ‘Quit’ to save the changes to the working directory.

Part Two will continue the analysis

Book Review: R High Performance Programming


A book review by Douglas M. Wiig

Aloysius Lim and William Tjhi. R High Performance Programming. Birmingham, UK: Packt Publishing Ltd., 2015. bit.ly/14Rhpp

R High Performance Programming is a well written, informative book most suited for the experienced R programmer. This book offers a handy guide for R users who need speed and efficiency for the tasks that they perform.

The authors begin with an informative chapter discussing some of the inherent constraints on R’s computing performance such as CPU and RAM usage, and how R code is interpreted on the fly rather than compiled. A guide to several methods of profiling R’s code execution time, memory allocation and CPU usage is discussed in the next chapter. Sample code included in the chapter allows the reader to experiment with various benchmarking techniques to measure processing time and memory usage. This chapter provides the reader with some good tools for benchmarking R projects and identifying areas where improvements in processing can be made.

As is always the case with technical books from Packt Publishing, ample code examples are used in the chapter and the complete code used in each chapter is available for download with the book. This is a very handy feature and allows readers to do some live programming with R as the book is read.

The authors discuss a number of simple tweaks that can be easily performed to increase processing speed such as using built in functions and using hash tables. The hash table technique is useful for applications that use frequent lookups and can dramatically reduce processing time when compared to the use of lists. Running example code using this technique shows a large decrease in processing time when using the hash table approach as compared to straight list processing lookups.

In chapter 4 the authors discuss the use of compiled R code and integrating compiled languages into R code. They show several examples of using the R package inline that allows users to embed C, C++, Objective-C, Objective-C++ and Fortran code within R. Once again there are ample code examples to illustrate the use of this technique. For more advanced uses of compiled code the authors discuss how to create entire modules coded in C++ using the Rcpp package. Several completed code examples are included to illustrate the technique.

Another interesting approach to speeding up R is discussed in a chapter that explores several R packages designed to exploit the capability of GPU’s (Graphic Processing Cards) that are a used in many computers. These techniques can facilitate creating very fast and efficient statistical modeling code using R and the GPU.

As indicated above, readers can download the code package included with the book and find a well-organized set of ten folders (one for each chapter) containing 51 files. These files contain the sample code from the book as well as other code segments and benchmark code discussed in the book. The authors indicate that the code has been tested on R 3.1.1, Ubuntu 14.04 Trusty Tahr, Mac OS X 10.9 Mavericks, and Windows 8.1. This allows integration of these code segments into the reader’s own projects with minimal changes.

Other chapters in R High Performance Programming discuss simple tweaks to use less memory, techniques to speed processing of large datasets and using parallel processing and clustering techniques. The last chapter contains a discussion of using R and Hadoop to process Big Data (massive datasets with sizes measured in petabytes -one petabyes is 1,048,576 gigabytes). Processing data of this magnitude presents many challenges and is an area that is currently the subject of much program development.

I found R High Performance Programming to be a useful and informative book for the advanced user of R. A working knowledge of statistics, R and other programming languages such as C++ or Java is necessary to realize the full benefit of the techniques presented in the book. The book also serves as a good learning tool for less knowledgeable R users who are seeking to advance their programming skills.

Readers who are interested in the use of Hadoop and cluster computer processing might find the book Raspberry Pi Super Cluster by Andrew K. Dennis of interest. (Packt Publishing, 2013

PAC-14-1987838-1387169). A review of this book can be found on my web site at http://dmwiig.net.

Reviewer Information:

Douglas M. Wiig, Professor of Political Science

Grand View University

Teaching areas include social science statistics and research methods, comparative politics, international politics.

Long time user and developer of computer and statistical applications

Host of Open Source Technology in Higher Education web site at http://dmwiig.net

Creator and moderator of LinkedIn discussion forum “Open Source Technology in Higher Education”

Regular contributor to several LinkedIn discussion forums

Author of numerous tutorials on using the R statistical programming language and Raspberry Pi computer