Using R for Basic Cross Tabulation Analysis: Part Three, Using the xtabs Function


Using R to Work with GSS Survey Data Part Three: Using xtabs to Create and Analyze Tables

A tutorial by D. M. Wiig
In Part Two of this series of tutorials I discussed how to find and import a data set from the NORC GSS survey. The focus of that tutorial was on the GSS2010 data set that was imported into the R workspace in SPSS format and then loaded into an R data frame for analysis.

Use the following code to load the data set into an R workspace:

>install.packages(“Hmisc”) #need for file import
>install.packages(“foreign”) #need for file import
>#get spss gss file and put into data frame
>library(Hmisc)
>gssdataframe <- spss.get(“/path-to-your-file/GSS2010.sav”, use.value.labels=TRUE)

The xtabs function provides a quick way to generate and view a cross tabulation of two variables and allows the user to specify one or more control variables in the cross tabulation. Using the variables “ partyid” and “polviews” the cross tablulation is generated with:

>#use xtabs to produce a table
>gsstab <- xtabs(~ partyid + polviews, data=gssdataframe)

To view the resulting table use:

>gsstab #show table

To view summary statistics generated use:

summary(gsstab)

This summary shows the number of cases in the table, the number of factors and the Chi-square value for the table.

Variables used in social science research are often interrelated so it is desirable to control for one or more variables in order to further examine the variables of interest. The table created in the gsstab data frame shows the relationship between political ideology and political party affiliation. To look at the relationship by gender use the following:

>#use xtabs to produce a table with a control variable
>gsstab2 <- xtabs(~ partyid + polviews+ sex, data=gssdataframe)

To view the new table use:

>gsstab2

To view summary statistics for the table enter:

>summary(gsstab2)

As noted above xtabs is a quick and powerful function to create N x N tables with or without control variables. In the next tutorial I explore the use of the ca function to produce a basic Correspondence analysis of underlying dimensions in an N x N table.

Advertisements

Using R to Work with GSS Survey Data: Cross Tabulation Tables


Using R to Work with GSS Survey Data: Viewing Datasets and Performing Cross Tabulations

A tutorial by D. M. Wiig

In a previous tutorial I discussed how to import datasets from the NORC General Social Science Survey using R to write the SPSS formatted data to an R data frame. Once the data has been imported into the R working environment it can be viewed and analyzed. There is a wealth of survey research data available at the NORC web site located at www.norc.org. In this tutorial the dataset gss2010.sav will be used. The dataset is available from www3.norc.org/GSS+Website.

From that page click on the “Quick Downloads” link on the right hand side of the page to access the list of available datasets. From the next page choose SPSS to access ‘.sav’ format files and finally “2010” under the heading “GSS 1972-2012 Release 6.” Please note that this is a rather large data file with 2044 observations of 794 variables. Download the file to a directory that you can access from your R console.

As discussed in a previous tutorial the SPSS format file can be loaded into an R data frame. Make sure that the R packages Hmisc and foreign have been installed and loaded before attempting to import the SPSS file. The following code will load the ‘.sav’ file:

>install.packages(“Hmisc”) #need for file import

>install.packages(“foreign”) #need for file import

>#get spss gss file and put into data frame

>library(Hmisc)

>gssdataframe <- spss.get(“/path-to-your-file/GSS2010.sav”, use.value.labels=TRUE)

Once the file is read into an R data frame it can be viewed in a spreadsheet like interface by using the command:

>View(gssdataframe)

Using the arrow keys, the home key, end key, and the page up and page down keys allows navigating and browsing the file.

Survey data such as that found in the GSS file is usually a mixture of data types ranging from ratio level numbers to categorical data. Cross tabulations are often used to explore relationships among variables that are ordinal or categorical in nature. R has a number of functions available for cross tabulations. The Table function is a quick way to generate a cross tabulation table with a number of options available. The following results in a frequency table of the variables “partyid” and “polviews” both of which are measured in categories:

>#use the gssdataframe

>#the variables partyid and polviews are used

>attach(gssdataframe)

>#create a table named ‘gsstable’

>gsstable <- table(partyid, polviews)

>gsstable #print table frequencies

The following output results:

                   polviews
partyid              EXTREMELY LIBERAL LIBERAL SLIGHTLY LIBERAL MODERATE
  STRONG DEMOCRAT                   41     105               42       94
  NOT STR DEMOCRAT                  14      62               57      154
  IND,NEAR DEM                      11      47               57      103
  INDEPENDENT                        5      20               33      189
  IND,NEAR REP                       1       4               16       74
  NOT STR REPUBLICAN                 2      10               16       88
  STRONG REPUBLICAN                  0       5                5       22
  OTHER PARTY                        1       5                6       16
                    polviews
partyid              SLGHTLY CONSERVATIVE CONSERVATIVE EXTRMLY CONSERVATIVE
  STRONG DEMOCRAT                      22           25                    6
  NOT STR DEMOCRAT                     28           16                    7
  IND,NEAR DEM                         25           11                    5
  INDEPENDENT                          43           32                    9
  IND,NEAR REP                         49           43                    8
  NOT STR REPUBLICAN                   72           72                   13
  STRONG REPUBLICAN                    23          101                   27
  OTHER PARTY                           3           12                    4

>

There are options available with the Table function that include calculating row and column marginal totals as well a cell percentages. Another quick method to generate tables is with the CrossTable function. The function is contained in the gmodels package and can be used on the table generated with the Table function above. Use the following lines of code to generate a cross table between ‘polviews’ and ‘partyid’ using the gsstable created above:

>library(gmodels)

>#produce basic crosstabs

>CrossTable(gsstable,prop.t=FALSE,prop.r=FALSE,prop.c=FALSE,chisq=TRUE,format=c(“SPSS”))

>

Cell Contents
|-------------------------|
|                   Count |
| Chi-square contribution |
|-------------------------|

Total Observations in Table:  1961 

                   | polviews 
           partyid |    EXTREMELY LIBERAL  |              LIBERAL  |     SLIGHTLY LIBERAL  |             MODERATE  | SLGHTLY CONSERVATIVE  |         CONSERVATIVE  | EXTRMLY CONSERVATIVE  |            Row Total | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
   STRONG DEMOCRAT |                  41  |                 105  |                  42  |                  94  |                  22  |                  25  |                   6  |                 335  | 
                   |              62.014  |              84.219  |               0.141  |               8.312  |              11.962  |              15.026  |               4.163  |                      | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
  NOT STR DEMOCRAT |                  14  |                  62  |                  57  |                 154  |                  28  |                  16  |                   7  |                 338  | 
                   |               0.089  |               6.911  |               7.238  |               5.486  |               6.840  |              26.537  |               3.215  |                      | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
      IND,NEAR DEM |                  11  |                  47  |                  57  |                 103  |                  25  |                  11  |                   5  |                 259  | 
                   |               0.121  |               4.902  |              22.674  |               0.284  |               2.857  |              22.144  |               2.830  |                      | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
       INDEPENDENT |                   5  |                  20  |                  33  |                 189  |                  43  |                  32  |                   9  |                 331  | 
                   |               4.634  |              12.733  |               0.969  |              32.889  |               0.067  |               8.107  |               1.409  |                      | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
      IND,NEAR REP |                   1  |                   4  |                  16  |                  74  |                  49  |                  43  |                   8  |                 195  | 
                   |               5.592  |              18.279  |               2.167  |               0.002  |              19.466  |               4.622  |               0.003  |                      | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
NOT STR REPUBLICAN |                   2  |                  10  |                  16  |                  88  |                  72  |                  72  |                  13  |                 273  | 
                   |               6.824  |              18.702  |               8.224  |               2.190  |              33.411  |              18.786  |               0.364  |                      | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
 STRONG REPUBLICAN |                   0  |                   5  |                   5  |                  22  |                  23  |                 101  |                  27  |                 183  | 
                   |               6.999  |              15.115  |              12.805  |              32.065  |               0.121  |             177.476  |              52.256  |                      | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
       OTHER PARTY |                   1  |                   5  |                   6  |                  16  |                   3  |                  12  |                   4  |                  47  | 
                   |               0.354  |               0.227  |               0.035  |               0.170  |               1.768  |               2.735  |               2.344  |                      | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
      Column Total |                  75  |                 258  |                 232  |                 740  |                 265  |                 312  |                  79  |                1961  | 
-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|

 
Statistics for All Table Factors


Pearson's Chi-squared test 
------------------------------------------------------------
Chi^2 =  801.8746     d.f. =  42     p =  3.738705e-141 


 
       Minimum expected frequency: 1.797552 
Cells with Expected Frequency < 5: 2 of 56 (3.571429%)

Warning message:
In chisq.test(t, correct = FALSE, ...) :
  Chi-squared approximation may be incorrect

>

This code produces a table of frequencies along with a basic Ch-squared test. Other options include generating cell percentages and using either SPSS or SAS table format. This is accomplished by changing the appropriate flag from FALSE to TRUE and specifying either SPSS or SAS for the format flag. The table formatting is compressed in this example due to the narrow margin requirements of the web page.  Use the scroll bar at the bottom of the page to view the entire table.

There are many functions available in R to analyze data in tabular format. In my next tutorial I will examine using the xtabs function to produce basic cross tabulation with control variables.

R Tutorial: Using R to Work With Datasets From the NORC General Social Science Survey


R Tutorial: Using R to Work With Datasets From the NORC General Social Science Survey

A tutorial by D. M. Wiig

Part One:

When I teach classes in social science statistics and social science research methods I like to use “live” data as much as possible both in classroom lectures and in homework assignments. For the social sciences one excellent and readily available source of live data is the ongoing General Social Science Survey project, The National Data Program for the Sciences. This is a project of NORC, a National Science Research Center at the University of Chicago (see www.norc.org for the projects main web site.)

There a a number of datasets available in different formats. The quick download datasets that I like to use are primarily SPSS data files. Many institutions have SPSS available for students and faculty but the use of SPSS is my no means universal. I have found that it is easy to use R to read the .sav format files into an R data frame and then write the file out to a comma separated value, .csv format that can be read my almost any statistics software package. As I will discuss in this an future tutorials it is also quite effective to use R to analyze the GSS files.

To create R datasets using the GSS files we can use some of the file import/export features available in R. To begin, make sure that the R packages “Hmisc” and “foreign” are installed and loaded in your R session environment. This can be accomplished using:

> install.packages(“Hmisc”) #need for file import

> install.packages(“foreign”) #need for file import

As an example, the following code will load the GSS data file “gss2010x.sav” into an R data frame using the spss.get function:

>library(Hmisc)

>gssdataframe <- spss.get(“/path-to-your-file/gss2010x.sav”, use.value.labels=TRUE)

The file “gss2010x.sav” contains 500 observations of 47 variables. Codebooks and other information about the data in these datasets is readily avaiable for download from the NORC web site. After the data is loaded into the data frame it can be viewed using:

>gssdataframe

To convert and save the file to a comma separated value (.csv) format use the following use the write.table function:

>#write dataframe to .csv file

>write.table(gssdataframe, “/path-to-your-file/gss2010x.csv”,sep=”,”)

The file, now in a .csv format can be accessed with virtually any statistics package or other software. In my next tutorial I will discuss working with GSS data using the various table and cross table functions available in R.