Tag Archives: NORC

Tutorial: Using R to Analyze NORC GSS Social Science Data, Part Six, R and ANOVA


Tutorial: Using R to Analyze NORC GSS Social Science Data, Part Six, R and ANOVA

A tutorial by Douglas M. Wiig

As discussed in previous segments of this tutorial, for anyone interested in researching social science questions there is a wealth of survey data available through the National Opinion Research Center (NORC) and its associated research universities. The Center has been conducting a national survey each year since 1972 and has compiled a massive database of data from these surveys. Most if not all of these data files can be accessed and downloaded without charge. I have been working with the 2014 edition of the data and for all part of this tutorial will use the GSS2014 data file that is available for download on the Center’s web site. (See the NORC main website at http://www.norc.org/Research/Projects/Pages/general-social-survey.aspx and at http://www3.norc.org/GSS+Website ).

Accessing and loading the NORC GSS2014 data set was discussed in part one of this tutorial. Refer to it if you need specific information on downloading the data set in STATA or SPSS format.  In this segment we will use the subset function to select a desired set of cases from all of the cases in the data file that meet certain criteria.  As indicated in my previous tutorial the GSS2014 data set contains a
total of 2588 cases and 866 variables.

Before starting this segment of the tutorial be sure that the foreign
package is installed and loaded into your R session. As I have indicated in previous tutorials, use of an IDE such as R Studio greatly facilitates entering and debugging R code when doing research such as is discussed in my tutorials.  

Import the GSS 2014 data file in SPSS format and load it into the data frame ‘gss14’ using:
#########################################################import  GSS2014 file in SPSS .sav format
#uses foreign package
########################################################require(foreign)
gss14<- read.spss("/path to your location/GSS2014.sav",                      use.value.labels=TRUE,max.value.labels=Inf, to.data.frame=TRUE)
#################################################

In this tutorial the analysis of this sample will focus on examining the hypothesis “An individual’s outlook on life is influenced by the amount of education the person has attained.” The GSS variables ‘educ’, education in number of years and ‘life’, whether the respondent rated life DULL, ROUTINE, or EXCITING. A simple approach to testing this hypothesis is to compare mean levels of education for each of the three categories of response. I will do this analysis in two stages. In the first stage I will use techniques discussed in a previous tutorial to select a subset of each response category and display the mean education level for each of the three categories.

The three subsets life1, life2, and life3 are generated using the following code:

###################################################
# create 3 subsets from gss14 view on life by years of education
##################################################

life1 <- subset(gss14, life == “DULL”, select=educ)

life2 <- subset(gss14, life ==”ROUTINE”, select=educ)

life3 <- subset(gss14, life == “EXCITING”, select=educ)

###################################################

#The three means of the subsets are displayed using the code:

# run summary statistics for each subgroup

##################################################

summary(life1)

summary(life2)

summary(life3)

###################################################

resulting the following output:
educ
Min. : 0.00
1st Qu.:10.00
Median :12.00
Mean :11.78
3rd Qu.:13.00
Max. :20.00

summary(life2)
educ
Min. : 0.00
1st Qu.:12.00
Median :13.00
Mean :13.22
3rd Qu.:16.00
Max. :20.00
NA’s :1

summary(life3)
educ
Min. : 2.00
1st Qu.:12.00
Median :14.00
Mean :14.31
3rd Qu.:16.00
Max. :20.00

As is seen above there does appear to be a difference among mean years of education and the corresponding outlook on life. In order to examine whether or not these observed differences are not due to chance a simple one-way Analysis of Variance can be generated.

In the next tutorial I will discuss performing the ANOVA and using pair-wise comparisons to determine which if any means are different.

R Tutorial: Using R to Analyze the NORC GSS2014 Database, Selecting Subsets and Comparing Means Using Student’s t Test


R Tutorial Part Three: Selecting Subsets and Comparing Means Using an Independent Sample t Test

A tutorial by Douglas M. Wiig

As discussed in previous segments of this tutorial, for anyone interested in researching social science questions there is a wealth of survey data available through the National Opinion Research Center (NORC) and its associated research universities. The Center has been conducting a national survey each year since 1972 and has compiled a massive database of data from these surveys. Most if not all of these data files can be accessed and downloaded without charge. I have been working with the 2014 edition of the data and for all part of this tutorial will use the GSS2014 data file that is available for download on the Center’s web site. (See the NORC main website at http://www.norc.org/Research/Projects/Pages/general-social-survey.aspx and at http://www3.norc.org/GSS+Website ).

Accessing and loading the NORC GSS2014 data set was discussed in part one of this tutorial. Refer to it if you need specific information on downloading the data set in STATA or SPSS format.  In this segment we will use the subset function to select a desired set of cases from all of the cases in the data file that meet certain criteria.  As indicated in my previous tutorial the GSS2014 data set contains a total of 2588 cases and 866 variables.
Before starting this segment of the tutorial be sure that the foreign package is installed and loaded into your R session.  Import the GSS 2014 data file and load it into the data frame ‘Dataset’ using:

########################################################
#import GSS2014 file in SPSS .sav format
#uses foreign package
########################################################
require(foreign)
Dataset <- read.spss("/path to your location/GSS2014.sav", 
                     use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)

###########################################################

In the previous segment of this tutorial we started to investigate whether or not an individual’s education had an effect on their response to a NORC survey item dealing with abortion. The item asked respondents to either ‘AGREE’ or ‘DISAGREE’ with the statement ‘A women should be allowed to obtain an abortion under any circumstances.’ We selected a subset of all of the respondents who answered ‘AGREE’ and a second subset of all the respondents who answered ‘DISAGREE’ using the following code:

##############################################

#select subset from Dataset and write to data frame SS1

###################################################
SS1 <- subset(Dataset, abany == "YES", select=educ)

View(SS1)

#######################################################

######################################################
#select subset from Dataset and write to data frame SS2
######################################################
SS2 <- subset(Dataset, abany == "NO", select=educ)
View(SS2)

A mean number of years of education can be calculated for each of the subsets using the following:

#calculate descriptive statistics for SS1 and SS2

####################################################

summary(SS1)

summary(SS2)

####################################################

Output from the above for SS1 is:

> summary(SS1)

educ

Min. : 0.0

1st Qu.:12.0

Median :15.0

Mean :14.6

3rd Qu.:16.0

Max. :20.0

Output for SS2 is:

> summary(SS2)

educ

Min. : 0.00

1st Qu.:12.00

Median :12.00

Mean :12.93

3rd Qu.:15.00

Max. :20.00

NA’s :1

As seen above there is a difference in mean years of education for the two subsets. We can use a two independent sample t test to determine whether or not the difference is large enough to not be due to chance.

In this tutorial I will use the Student’s t test function t.test that is found in the stats package. The function is used in the following form:

t.test =(x,y, alternative = c(“two.sided”, “less”, “greater”), mu=0, paired = FALSE, var.equal = FALSE, conf.level = .95)

where x and y = numeric vectors of data values

alternative = specification of a one-tailed or two-tailed test

mu = 0 specification that true difference between means is zero

paired = FALSE specification of a two independent sample test; if TRUE a paired samples test will be used

var.equal = specification of equal variances of the two samples; if TRUE the pooled variance is used otherwise a Welsh approximation of degrees of freedom is used

conf.level = confidence level of the interval

For further information see the documentation in CRAN help files for the function t.test().

Using the vectors selected from the dataset SS1, and SS2 the t test is performed using:

###########################################################

#perform a t test to compare sample means

#########################################################

t.test(SS1,SS2, alternative = c(“two.sided”), mu=0, paired=FALSE, var.equal = TRUE, conf.level = .95)

###########################################################

Resulting in output of:

        Two Sample t-test

data:  SS1 and SS2 
t = 11.1356, df = 1650, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 1.369673 1.955333 
sample estimates:
mean of x mean of y 
 14.59517  12.93267 

We can see that the difference between the mean years of education for the ‘YES’ and the ‘NO’ samples is significant at an alpha level of p=.05. Subsets can also be used to compare means involving more than two samples and using simple one-way Analysis of Variance. This will be covered in the next part of the tutorial.

R Tutorial: Using the NORC GSS2014 Data File, Creating and Using Subsets


R Tutorial:  Using the NORC GSS2014 data file, creating and using subsets

By Douglas M. Wiig

As discussed in the first part of this tutorial, for anyone interested in researching social science questions there is a wealth of survey data available through the National Opinion Research Center (NORC) and its associated research universities. The Center has been conducting a national survey each year since 1972 and has compiled a massive database of data from these surveys. Most if not all of these data files can be accessed and downloaded without charge. I have been working with the 2014 edition of the data and for all part of this tutorial will use the GSS2014 data file that is available for download on the Center’s web site. (See the NORC main website at http://www.norc.org/Research/Projects/Pages/general-social-survey.aspx and at http://www3.norc.org/GSS+Website ).

Accessing and loading the NORC GSS2014 data set was discussed in part one of this tutorial. Refer to it if you need specific information on downloading the data set in STATA or SPSS format.  In this segment we will  use the subset function to select a desired set of cases from all of the cases in the data file that meet certain criteria.  As indicated in my previous tutorial the GSS2014 data set contains a total of 2588 cases and 866 variables.

One of the areas surveyed by NORC each year deals with attitudes toward abortion. One of the questions simply asks respondents if they '...approve of abortion under any circumstances.'  The response is either YES or NO to this question.  Let's assume a researcher is interested in investigating whether or not education has an effect on how the respondent answers the question.

To look at this hypothesis we can use the abortion attitude variable mentioned above, 'abany', and an education variable 'educ' which measures education as the actual number of years of education.  Twelve years of education would be a high school graduate for example, and 16 years would be a college graduate.  We can select a subset of all respondents who indicated 'YES' on the survey question and then generate a mean years of education for this subset.  We can then select a subset of all respondents who indicated 'NO' on the question and calculate a mean years of education for the second subset.

Before starting this code segment be sure that the foreign package is installed and loaded into your R session.  Import the GSS 2014 data file and load it into the data frame ‘Dataset’ using:

########################################################
#import GSS2014 file in SPSS .sav format
#uses foreign package
########################################################
require(foreign)
Dataset <- read.spss("/path to your location/GSS2014.sav", 
                     use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)
########################################################

Once the GSS2014 file is loaded use the subset function to select your first subset of respondents who answered the 'abany' question with and 'YES response.  Use the following code to select the subset and store it in a data frame 'SS1':

####################################################
#select subset from Dataset and write to data frame SS1
####################################################
SS1 <- subset(Dataset, abany == "YES", select=educ)
View(SS1)
####################################################

Now select a second subset of respondents who answered the 'abany' question with a 'NO' response. Use the following code to select the subset and store in a data frame 'SS2':

######################################################
#select subset from Dataset and write to data frame SS2
######################################################
SS2 <- subset(Dataset, abany == "NO", select=educ)
View(SS2)
######################################################

In using the subset function as seen above the name of the data set is specified, the criteria for selecting rows is given, and the variables to select from each row specified.  If no 'select' option is given all variables will be shown for the selected row.

Using the View command to examine each subset shows the years of education for each of the 746 respondents who answered ‘YES’ and each of the 907 respondents who answered ‘NO.’ Since the variable ‘educ’ is measured as ratio level numeric data we can calculate a mean and standard deviation for each subset and perform both graphical and statistical analysis of any observed difference between the two means. This will be the subject of the next installment of the tutorial.