Tag Archives: r programming

R Tutorial: Using R to Analyze the NORC GSS2014 Database, Selecting Subsets and Comparing Means Using Student’s t Test


R Tutorial Part Three: Selecting Subsets and Comparing Means Using an Independent Sample t Test

A tutorial by Douglas M. Wiig

As discussed in previous segments of this tutorial, for anyone interested in researching social science questions there is a wealth of survey data available through the National Opinion Research Center (NORC) and its associated research universities. The Center has been conducting a national survey each year since 1972 and has compiled a massive database of data from these surveys. Most if not all of these data files can be accessed and downloaded without charge. I have been working with the 2014 edition of the data and for all part of this tutorial will use the GSS2014 data file that is available for download on the Center’s web site. (See the NORC main website at http://www.norc.org/Research/Projects/Pages/general-social-survey.aspx and at http://www3.norc.org/GSS+Website ).

Accessing and loading the NORC GSS2014 data set was discussed in part one of this tutorial. Refer to it if you need specific information on downloading the data set in STATA or SPSS format.  In this segment we will use the subset function to select a desired set of cases from all of the cases in the data file that meet certain criteria.  As indicated in my previous tutorial the GSS2014 data set contains a total of 2588 cases and 866 variables.
Before starting this segment of the tutorial be sure that the foreign package is installed and loaded into your R session.  Import the GSS 2014 data file and load it into the data frame ‘Dataset’ using:

########################################################
#import GSS2014 file in SPSS .sav format
#uses foreign package
########################################################
require(foreign)
Dataset <- read.spss("/path to your location/GSS2014.sav", 
                     use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)

###########################################################

In the previous segment of this tutorial we started to investigate whether or not an individual’s education had an effect on their response to a NORC survey item dealing with abortion. The item asked respondents to either ‘AGREE’ or ‘DISAGREE’ with the statement ‘A women should be allowed to obtain an abortion under any circumstances.’ We selected a subset of all of the respondents who answered ‘AGREE’ and a second subset of all the respondents who answered ‘DISAGREE’ using the following code:

##############################################

#select subset from Dataset and write to data frame SS1

###################################################
SS1 <- subset(Dataset, abany == "YES", select=educ)

View(SS1)

#######################################################

######################################################
#select subset from Dataset and write to data frame SS2
######################################################
SS2 <- subset(Dataset, abany == "NO", select=educ)
View(SS2)

A mean number of years of education can be calculated for each of the subsets using the following:

#calculate descriptive statistics for SS1 and SS2

####################################################

summary(SS1)

summary(SS2)

####################################################

Output from the above for SS1 is:

> summary(SS1)

educ

Min. : 0.0

1st Qu.:12.0

Median :15.0

Mean :14.6

3rd Qu.:16.0

Max. :20.0

Output for SS2 is:

> summary(SS2)

educ

Min. : 0.00

1st Qu.:12.00

Median :12.00

Mean :12.93

3rd Qu.:15.00

Max. :20.00

NA’s :1

As seen above there is a difference in mean years of education for the two subsets. We can use a two independent sample t test to determine whether or not the difference is large enough to not be due to chance.

In this tutorial I will use the Student’s t test function t.test that is found in the stats package. The function is used in the following form:

t.test =(x,y, alternative = c(“two.sided”, “less”, “greater”), mu=0, paired = FALSE, var.equal = FALSE, conf.level = .95)

where x and y = numeric vectors of data values

alternative = specification of a one-tailed or two-tailed test

mu = 0 specification that true difference between means is zero

paired = FALSE specification of a two independent sample test; if TRUE a paired samples test will be used

var.equal = specification of equal variances of the two samples; if TRUE the pooled variance is used otherwise a Welsh approximation of degrees of freedom is used

conf.level = confidence level of the interval

For further information see the documentation in CRAN help files for the function t.test().

Using the vectors selected from the dataset SS1, and SS2 the t test is performed using:

###########################################################

#perform a t test to compare sample means

#########################################################

t.test(SS1,SS2, alternative = c(“two.sided”), mu=0, paired=FALSE, var.equal = TRUE, conf.level = .95)

###########################################################

Resulting in output of:

        Two Sample t-test

data:  SS1 and SS2 
t = 11.1356, df = 1650, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 1.369673 1.955333 
sample estimates:
mean of x mean of y 
 14.59517  12.93267 

We can see that the difference between the mean years of education for the ‘YES’ and the ‘NO’ samples is significant at an alpha level of p=.05. Subsets can also be used to compare means involving more than two samples and using simple one-way Analysis of Variance. This will be covered in the next part of the tutorial.

R Tutorial: Using the NORC GSS2014 Data File, Creating and Using Subsets


R Tutorial:  Using the NORC GSS2014 data file, creating and using subsets

By Douglas M. Wiig

As discussed in the first part of this tutorial, for anyone interested in researching social science questions there is a wealth of survey data available through the National Opinion Research Center (NORC) and its associated research universities. The Center has been conducting a national survey each year since 1972 and has compiled a massive database of data from these surveys. Most if not all of these data files can be accessed and downloaded without charge. I have been working with the 2014 edition of the data and for all part of this tutorial will use the GSS2014 data file that is available for download on the Center’s web site. (See the NORC main website at http://www.norc.org/Research/Projects/Pages/general-social-survey.aspx and at http://www3.norc.org/GSS+Website ).

Accessing and loading the NORC GSS2014 data set was discussed in part one of this tutorial. Refer to it if you need specific information on downloading the data set in STATA or SPSS format.  In this segment we will  use the subset function to select a desired set of cases from all of the cases in the data file that meet certain criteria.  As indicated in my previous tutorial the GSS2014 data set contains a total of 2588 cases and 866 variables.

One of the areas surveyed by NORC each year deals with attitudes toward abortion. One of the questions simply asks respondents if they '...approve of abortion under any circumstances.'  The response is either YES or NO to this question.  Let's assume a researcher is interested in investigating whether or not education has an effect on how the respondent answers the question.

To look at this hypothesis we can use the abortion attitude variable mentioned above, 'abany', and an education variable 'educ' which measures education as the actual number of years of education.  Twelve years of education would be a high school graduate for example, and 16 years would be a college graduate.  We can select a subset of all respondents who indicated 'YES' on the survey question and then generate a mean years of education for this subset.  We can then select a subset of all respondents who indicated 'NO' on the question and calculate a mean years of education for the second subset.

Before starting this code segment be sure that the foreign package is installed and loaded into your R session.  Import the GSS 2014 data file and load it into the data frame ‘Dataset’ using:

########################################################
#import GSS2014 file in SPSS .sav format
#uses foreign package
########################################################
require(foreign)
Dataset <- read.spss("/path to your location/GSS2014.sav", 
                     use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)
########################################################

Once the GSS2014 file is loaded use the subset function to select your first subset of respondents who answered the 'abany' question with and 'YES response.  Use the following code to select the subset and store it in a data frame 'SS1':

####################################################
#select subset from Dataset and write to data frame SS1
####################################################
SS1 <- subset(Dataset, abany == "YES", select=educ)
View(SS1)
####################################################

Now select a second subset of respondents who answered the 'abany' question with a 'NO' response. Use the following code to select the subset and store in a data frame 'SS2':

######################################################
#select subset from Dataset and write to data frame SS2
######################################################
SS2 <- subset(Dataset, abany == "NO", select=educ)
View(SS2)
######################################################

In using the subset function as seen above the name of the data set is specified, the criteria for selecting rows is given, and the variables to select from each row specified.  If no 'select' option is given all variables will be shown for the selected row.

Using the View command to examine each subset shows the years of education for each of the 746 respondents who answered ‘YES’ and each of the 907 respondents who answered ‘NO.’ Since the variable ‘educ’ is measured as ratio level numeric data we can calculate a mean and standard deviation for each subset and perform both graphical and statistical analysis of any observed difference between the two means. This will be the subject of the next installment of the tutorial.

R Tutorial: Using R with NORC GSS Data Part Two, Generating Simple Tables and Using Subsets


A tutorial by Douglas M. Wiig

Part one of the tutorial  centered on importing NORC GSS data in STATA or SPSS formats in an R data frame. For illustration I used the GSS2014 survey data set that consists of 2538 cases and 866 variables. If a researcher wishes to generate some simple cross tabulations the R CrossTable function is very useful.

The CrossTable function is part of the gmodels package, so before running scripts in this tutorial make sure you have installed and loaded gmodels from your favorite CRAN mirror site. As discussed in part one of the tutorial load the GSS2014 dataset into the global environment using:

>require(foreign)

>Dataset <- read.spss(“E:/research/Documents/GSS2014.sav”,

use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)

The CrossTable function allows a basic cross tabulation to be performed and includes a large number of options that can be incorporated into the table. The basic structure is as follows:

Usage

CrossTable(x, y, digits=3, max.width = 5, expected=FALSE, prop.r=TRUE, prop.c=TRUE,

prop.t=TRUE, prop.chisq=TRUE, chisq = FALSE, fisher=FALSE, mcnemar=FALSE,

resid=FALSE, sresid=FALSE, asresid=FALSE,

missing.include=FALSE,

format=c(“SAS”,”SPSS”), dnn = NULL, …)

Arguments

x A vector or a matrix. If y is specified, x must be a vector

y A vector in a matrix or a dataframe

digits Number of digits after the decimal point for cell proportions

max.width In the case of a 1 x n table, the default will be to print the output horizontally.

If the number of columns exceeds max.width, the table will be wrapped for

each successive increment of max.width columns. If you want a single column

vertical table, set max.width to 1

expected If TRUE, chisq will be set to TRUE and expected cell counts from the _2 will be

included

prop.r If TRUE, row proportions will be included

prop.c If TRUE, column proportions will be included

prop.t If TRUE, table proportions will be included

prop.chisq If TRUE, chi-square contribution of each cell will be included

chisq If TRUE, the results of a chi-square test will be included

fisher If TRUE, the results of a Fisher Exact test will be included

mcnemar If TRUE, the results of a McNemar test will be included

resid If TRUE, residual (Pearson) will be included

sresid If TRUE, standardized residual will be included

asresid If TRUE, adjusted standardized residual will be included

missing.include

If TRUE, then remove any unused factor levels

format Either SAS (default) or SPSS, depending on the type of output desired.

dnn the names to be given to the dimensions in the result (the dimnames names).

optional arguments

(Gregory Warnes, maintainer, Package ‘Gmodels’ February, 2015. http://cran.r-project.org/src/contrib/PACKAGES.html)

In this tutorial I will create a  table to examine the relationship between income and education using the variables ‘degree’ and ‘income6’ from the GSS dataset. Both are categorical factors. To simplify the resulting table only actual frequencies will be reported and the ‘chisq’ option will be used to generate a chi-squared test. The format used will be set to SPSS. Use the following statement:

>Generate a cross table of frequencies with chisq reported

>CrossTable(Dataset$”incom16″,Dataset$”degree”, chisq=TRUE, format=c(“SPSS”),prop.r=FALSE, prop.c=FALSE, prop.t=FALSE, prop.chisq=FALSE)

>

In the above code, the row variable is income the appropriate column of the dataset is selected with the ‘Dataset$”incom16” statement. The column variable for the table is education and the appropriate column of the dataset is selected with the ‘Dataset$”degree” statement. The various cell proportions must be set to ‘FALSE’ as they are defaulted to ‘True.’

When you run the above script the table will be generated in SPSS format on the screen.  I will not reproduce the table here because of formatting problems of fitting the table into the blog format.

In part three of this turorial I will discuss generating subsets of the GSS data file and using subsets for statistical analyses such as t tests and ANOVA.


	

Tutorial: Using R to Analyze GSS2014 Social Science Data, Part One: Importing the Database in SPSS or STATA Format


For anyone interested in researching social science questions there is a wealth of survey data available through the National Opinion Research Center (NORC) and its associated research universities. The Center has been conducting a national survey each year since 1972 and has compiled a massive database of data from these surveys. Most if not all of these data files can be accessed and downloaded without charge. I have been working with the 2014 edition of the data and for this tutorial will use the GSS2014 data file that is available for download on the Center’s web site. ( See the NORC main website at http://www.norc.org/Research/Projects/Pages/general-social-survey.aspx and at http://www3.norc.org/GSS+Website ).

As noted above the datasets that are available for download are available in both SPSS format and STATA format. To work with either of these formats using R it is necessary to read the file into a data frame using one of a couple of different packages. The first option I will discuss uses the Hmisc package. The second option I will discuss uses the foreign package. Install both of these packages from your favorite CRAN mirror site before starting the code in this tutorial.

For this tutorial I am using the one year release file GSS2014. This file contains 2538 cases and 866 variables. Download the file   from the web site listed above in both SPSS and STATA formats. Use the following code to load the Hmisc package into your R global environment:

                >require(Hmisc)

Now load the GSS2014.sav SPSS version from your storage device using the following line of code. I am using the filename GSS2014 for my data file and loading the file into the data frame ‘gss14’:

>#load the GSS data file in SPSS format

                >put data into data frame ‘gss14’

                gss14 <- spss.get(F:/research/Documents/GSS2014.sav”,                     use.value.labels=TRUE)

                >

To view the data that was loaded use the command:

>View(gss14)

This will produce a spreadsheet-like matrix of rows and columns containing the data. To load the data file in STATA format download the STATA version of the file from the NORC web site a discussed above. My STATA file is also named GSS2014, but with the STATA .dta extension. Load the file into a data frame using:

>load STATA format file into data frame ‘Dataset2’

                >Datatset2 <- read.dta(“F:/resarch/Documents/GSS2014.dta”)

               >

Once again, you can view the data frame loaded using the command:

>View(dataset2)

Both the STATA and SPSS formats of the data set can also be loaded into R using the foreign package. The procedure is the same for both SPSS and STATA

>load SPSS version

                >require(foreign)

                >Dataset <- read.spss(“F:/research/Documents/GSS2014.sav”,   use.value.labels=TRUE)

 >load STATA version into data frame ‘Dataset3’

>Dataset3 <- read.dta(“E:/research/Documents/GSS2014.dta”)

Use the ‘View()’ command to view the data frame.

In part two I will discuss some techniques using R to create and analyze subsets of the GSS2014 data file.

 

Using R for Nonparametric Analysis, The Kruskal-Wallis Test Part Four: R Script and Some Notes on IDE’s


 

Using R for Nonparametric Analysis, The Kruskal-Wallis Test: R Script and Some Notes on IDE’s

 

A tutorial by Douglas M. Wiig

 

In the previous three parts of this tutorial I discussed using R to enter a data set and perform a nonparametric Kruska-Wallis test for ranked means. In this final part the commented script that was used in the first three parts is listed. 

 

If you are going to use R for the majority of your statistical analysis it is highly advisable that you investigate some of the IDE’s (Integrated Development Environments) that are available to assist in coding and debugging R script and creating R packages for personal use or distribution. I think one of the easiest to use is R Studio. R Studio is available in both free open source and commercial versions and can be downloaded at http://www.rstudio.com    There are versions available for Windows, various Linux distributions, and Mac OS.

The R studio console provides a number of useful tools that facilitate coding. The screen is divided into four sections with one section providing a code editor that features syntax highlighting, code completion and many other features such as line or block code execution. Another window contains R and all displays output, error messages and warnings when code is executed from the editor. A third window displays all of the current environmental variables that are active and can also show all currently loaded R packages. A fourth window can show graphic output from executed code, can be used to manage, download and install R packages, and can be used to access the CRAN database of online help. There are other useful tools that are too numerous to discuss here.

 

Another program that is worth looking at is RKWard which combines an IDE with a graphics GUI for R statistical analysis. Information and downloads for RKWard can be found at https://rkward.kde.org. This program is also free and open source and can be run on a Windows platform, Mac OS, or various distributions of Linux. The program has been optimized for Linux. A discussion of these IDE’s is beyond the scope of this posting.

 

Shown below is the commented R script for all three parts of the Kruskal-Wallis tutorial. For ease of reading code portions are shown in bold print.

 

#packages that must be present in the global environment before running these scripts

 

#stats; graphics; grDevices; utils; datasets; methods; base

 

#

 

#code to enter data using the data editor

 

#KW data entry, define file kruskal as a data frame

 

kruskal <-data.frame()

 

#invoke the data editor

 

kruskal <-edit(kruskal)

 

#define group as containing 3 factors; tell R which data column goes with which factor

 

group <- factor(1,2,3)

 

#alternative data entry method

 

#Define factor Group as containing three categories

 

Group <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3)

 

#create a vector defined as authscore and enter values

 

authscore <- c(96,128,83,61,101,82,121,132,135,109,115,149,166,147)

 

#create data frame kruskal matching each group factor to individual scores

 

kruskal <- data.frame(Group, authscore)

 

#use the following line to look at the structure of the data frame created

 

str(kruskal)

 

#run the basic Kruskal-Wallis test

 

#

 

kruskal.test(authscore ~ Group, data=kruskal)

 

#

 

#the following code is used to conduct a post-hoc comparison of the ranked means

 

#it is useful to first do a simple boxplot for a visual comparison

 

#Use this script to save the boxplot graphic to a .png data file

 

#save output in pdf file authplot

 

#send output to screen and file

 

sink()

 

authplot <- boxplot(authscore ~ Group, data=kruskal, main=”Group Comparison”, ylab=”authscore”)

 

#save .png file

 

png(“authplot.png”)

 

#now return all output to console

 

dev.off()

 

#

 

#make sure that the package PMCMR is loaded before running the following script

 

library(PMCMR)

 

#use the ‘with’ function to pass the data from the kruskal data frame to the post hoc

 

#test script; specify the Tukey HSD method for determining significance of each

 

# pair of comparisions

 

#

 

with(kruskal, {

 

 

posthoc.kruskal.nemenyi.test(authscore, Group, “Tukey”)

 

})

 

#

 

#NOTE: if using a version of R < 3.xx then use the package pgirmess instead of PMCMR

 

#

 

#the following lines show the post hoc analysis using the pgirmess package

 

#note the function kuskalmc is used for the comparisons

 

library(pgirmess)

 

authscore <- c(96,128,83,61,101,82,121,132,135,109,115,149,166,147)

 

Group <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3)

 

kruskalmc(authscore ~ Group, probs=.05, cont=NULL)

 

#

 

Using R in Nonparametric Statistical Analysis, The Kruskal-Wallis Test Part Three: Post Hoc Pairwise Multiple Comparison Analysis of Ranked Means


Using the Kruskal-Wallis Test, Part Three:  Post Hoc Pairwise Multiple Comparison Analysis of Ranked Means

A tutorial by Douglas M. Wiig

In previous tutorials I discussed an example of entering data into a data frame and performing a nonparametric Kruskal-Wallis test to determine if there were differences in the authoritarian scores of three different groups of educators. The test statistic indicated that at least one of the groups(group 1) was significantly different from the other two.

In order to explore the difference further it common practice to do post hoc analysis of the differences. There are a number of methods that have been devised to do these comparisons, but one of the most straightforward and easiest to understand is pairwise comparison of ranked means(or means if using standard ANOVA.)

Prior to entering the code for this section be sure that the following packages are installed and loaded:

       PMCMR

   prirmess

In part one data was entered into the R editor to create a data frame. Data frames can also be created directly using R script. The script to create the data frame for this example uses the following code:

#create data frame from script input

>Group <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3)

>authscore <-c(96,128,83,61,101,82,121,132,135,109,115,149,166,147)

>kruskal <- data.frame(Group, authscore)

The group identifiers are entered and assigned to the variable Group, and the authority scores are assigned to the variable authscore. Notice that each identifier is matched with an appropriate authscore just as they were when entered in columns using the data editor. The vectors are then assigned to the variable kruskal to create a data.frame. Once again the structure of the data frame can be checked using the command:

>str(kruskal)

resulting in:

'data.frame':   14 obs. of  2 variables:
 $ Group    : num  1 1 1 1 1 2 2 2 2 2 ...
 $ authscore: num  96 128 83 61 101 82 121 132 135 109 ...

>

It is often useful to do a visual examination of the ranked means prior to post hoc analysis. This can be easily accomplished using a boxplot to display the 3 groups that are presented in the example. If the data frame created in tutorial one is still in the global environment the boxplot can be generated with the following script:

>#boxplot using authscore and group variables from the data frame created in part one

>boxplot(authscore ~ group, data=kruskal, main=”Group Comparison”, ylab=”authscore”)

>

The resulting boxplot is seen below:

Rplot5

As can be seen in the plot, authority score differences are the greatest between group 1 and 3 with group 2 In between. Use the following code to run the Kruskal-Wallis test and examine if any of the means are significantly different:

#library(PMCMR)

with(kruskal, {

posthoc.kruskal.nemenyi.test(authscore, Group, “Tukey”)

}

The post hoc test used in this example is from the recently released PMCMR R package. For details of this and other post hoc tests contained in the package( see Thorsten Polert, Calculate Pairwise Multiple Comparisons of Mean Rank Sums, 2015. http://cran.r-project.org/web/packages/PMCMR/PMCMR.pdf.) The test employed here used the Tukey method to make pairwise comparisons of the mean rank authoritarianism scores of the three groups. The output from the script above is:

Pairwise comparisons using Tukey and Kramer (Nemenyi) test

with Tukey-Dist approximation for independent samples

data: authscore and Group

      1                    2

2   0.493             –

3    0.031        0.310

P value adjustment method: none

The output above confirms what would be expected from observing the boxplot. The only means that differ significantly are means 1 and 3 with a p = .031.

The PMCMR package will only work with R versions 3.0.x. If using an earlier version of R another package can be used to accomplish the post hoc comparisons. This package is the pgirmess package (see http://cran.r-project.org/web/packages/pgirmess/pgirmess.pdf for complete details). Using the vectors authscore and Group that were created earlier the script for multiple comparison using the pgirmess package is:

library(pgirmess)

authscore <- c(96,128,83,61,101,82,121,132,135,109,115,149,166,147)

Group <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3)

kruskalmc(authscore ~ Group, probs=.05, cont=NULL)

and the output from this script using a significance level of p = .05 is:

Multiple comparison test after Kruskal-Wallis

p.value: 0.05

Comparisons

      obs.dif    critical.dif     difference

1-2    3.0        6.333875         FALSE

1-3    7.1        6.718089         TRUE

2-3    4.1        6.718089        FALSE

>

As noted earlier the comparison between groups one and three is shown to be the only significant difference at the p=.05 level.

Both the PMCMR and the pgirmess packages are useful in producing post hoc comparisons with the Kruskal-Wallis test. It hoped that the series of tutorials discussing nonparametric alternatives common parametric statistical tests has helped demonstrate the utility of these approaches in statistical analysis.

In part four I will post the complete script used in all three tutorials.

Using R for Nonparametric Statistics: The Kruskal-Wallis Test, Part Two


Using R for Nonparametric Statistics:  The Kruskal-Wallis Test, Part Two

A Tutorial by Douglas M. Wiig

Before we can run the Kruskal-Wallis test we need to define which column contains the factors (independent variables) and which contains the authoritarianism scores (dependent variable). Once we define the factor column R will match the correct score to each of the 14 observations.
As set up in the study, ‘Group’ is the factor(independent variable), and ‘authscore’ is the dependent variable. Use the command:

> Group <-factor(1,2,3)

This designates which observation belongs to each group. To make sure the data structure has been set up correctly use the command:

> str(kruskal)
‘data.frame’: 14 obs. of 2 variables:
$ Group : num 1 1 1 1 1 2 2 2 2 2 …
$ authscore: num 96 128 83 61 101 82 124 132 135 109 …
>

The output of this command shows a summary of the structure of the data frame created. We can now run the Kruskal Wallis test with the command:

> kruskal.test(authscore ~ Group, data=kruskal)

The output will be:

Kruskal-Wallis rank sum test

data: authscore by Group
Kruskal-Wallis chi-squared = 6.4057, df = 2, p-value = 0.04065

>

As seen in the above output the analysis of authoritarianism score by group indicates that the probability of differences in scores among the three groups being due to chance alone is less that the .05 alpha level that was set for the study. (pobt < .05). Further post hoc analysis would be necessary to determine the exact nature of the differences among the scores of the three groups. This will be the topic of a future tutorial.

More to come:  Part Three will explore the use of multiple comparison techniques to analyze ranked means

R Tutorial: A Simple Script to Create and Analyze a Data File, Part Two


A simple R script to create and analyze a data file:part two:    A tutorial by D.M. Wiig

In part one I discussed creating a simple data file containing the height and weight of 10 subjects.  In part two I will discuss the script needed to create a simple scatter diagram of the data and perform a basic Pearson correlation.  Before attempting to continue the script in this tutorial make sure that you have created and save the data file as discussed in part one.

To conduct a correlation/regression analysis of the data we want to first view a simple scatter plot. Load a library named ‘car’ into R memory. Use the command:

> library(car)

Then issue the following command to plot the graph:

> plot(Height~Weight, log=”xy”, data=Sampledatafile)

The output is seen below:

scatter1

We can calculate a Pearson’s Product Moment correlation coefficient by using the command:

> # Pearson rank-order correlations between height and weight

> cor(Sampledatafile[,c(“Height”,”Weight”)], use=”complete.obs”, method=”pearson”)

Which results in:

Height Weight

Height 1.0000000 0.8813799

Weight 0.8813799 1.0000000

To run a simple linear regression for Height and Weight use the following code. Note that the dependent variable (Weight) is listed firt:

> model <-lm(Weight~Height, data=Sampledatafile)

> summary(model)

Call:

lm(formula = Weight ~ Height, data = Sampledatafile)

Residuals:

Min 1Q Median 3Q Max

-30.6800 -16.9749 -0.8774 19.9982 25.3200

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -337.986 98.403 -3.435 0.008893 **

Height 7.518 1.425 5.277 0.000749 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.93 on 8 degrees of freedom

Multiple R-squared: 0.7768, Adjusted R-squared: 0.7489

F-statistic: 27.85 on 1 and 8 DF, p-value: 0.0007489

>

To plot a regression line on the scatter diagram use the following command line. Note that we enter the y (dependent)variable first and then the x (independent)variable:

> scatterplot(Weight~Height, log=”xy”, reg.line=lm, smooth=FALSE, spread=FALSE,

+ data=Sampledatafile)

>

This will produce a graph as seen below. Note that box plots have also been included in the output:

scatter2

This tutorial has hopefully demonstrated that complex tasks can be accomplished with relatively simple command line script. I will explore more of these simple scripts in future tutorials.

More to Come:

 

Book Review: R High Performance Programming


A book review by Douglas M. Wiig

Aloysius Lim and William Tjhi. R High Performance Programming. Birmingham, UK: Packt Publishing Ltd., 2015. bit.ly/14Rhpp

R High Performance Programming is a well written, informative book most suited for the experienced R programmer. This book offers a handy guide for R users who need speed and efficiency for the tasks that they perform.

The authors begin with an informative chapter discussing some of the inherent constraints on R’s computing performance such as CPU and RAM usage, and how R code is interpreted on the fly rather than compiled. A guide to several methods of profiling R’s code execution time, memory allocation and CPU usage is discussed in the next chapter. Sample code included in the chapter allows the reader to experiment with various benchmarking techniques to measure processing time and memory usage. This chapter provides the reader with some good tools for benchmarking R projects and identifying areas where improvements in processing can be made.

As is always the case with technical books from Packt Publishing, ample code examples are used in the chapter and the complete code used in each chapter is available for download with the book. This is a very handy feature and allows readers to do some live programming with R as the book is read.

The authors discuss a number of simple tweaks that can be easily performed to increase processing speed such as using built in functions and using hash tables. The hash table technique is useful for applications that use frequent lookups and can dramatically reduce processing time when compared to the use of lists. Running example code using this technique shows a large decrease in processing time when using the hash table approach as compared to straight list processing lookups.

In chapter 4 the authors discuss the use of compiled R code and integrating compiled languages into R code. They show several examples of using the R package inline that allows users to embed C, C++, Objective-C, Objective-C++ and Fortran code within R. Once again there are ample code examples to illustrate the use of this technique. For more advanced uses of compiled code the authors discuss how to create entire modules coded in C++ using the Rcpp package. Several completed code examples are included to illustrate the technique.

Another interesting approach to speeding up R is discussed in a chapter that explores several R packages designed to exploit the capability of GPU’s (Graphic Processing Cards) that are a used in many computers. These techniques can facilitate creating very fast and efficient statistical modeling code using R and the GPU.

As indicated above, readers can download the code package included with the book and find a well-organized set of ten folders (one for each chapter) containing 51 files. These files contain the sample code from the book as well as other code segments and benchmark code discussed in the book. The authors indicate that the code has been tested on R 3.1.1, Ubuntu 14.04 Trusty Tahr, Mac OS X 10.9 Mavericks, and Windows 8.1. This allows integration of these code segments into the reader’s own projects with minimal changes.

Other chapters in R High Performance Programming discuss simple tweaks to use less memory, techniques to speed processing of large datasets and using parallel processing and clustering techniques. The last chapter contains a discussion of using R and Hadoop to process Big Data (massive datasets with sizes measured in petabytes -one petabyes is 1,048,576 gigabytes). Processing data of this magnitude presents many challenges and is an area that is currently the subject of much program development.

I found R High Performance Programming to be a useful and informative book for the advanced user of R. A working knowledge of statistics, R and other programming languages such as C++ or Java is necessary to realize the full benefit of the techniques presented in the book. The book also serves as a good learning tool for less knowledgeable R users who are seeking to advance their programming skills.

Readers who are interested in the use of Hadoop and cluster computer processing might find the book Raspberry Pi Super Cluster by Andrew K. Dennis of interest. (Packt Publishing, 2013

PAC-14-1987838-1387169). A review of this book can be found on my web site at http://dmwiig.net.

Reviewer Information:

Douglas M. Wiig, Professor of Political Science

Grand View University

Teaching areas include social science statistics and research methods, comparative politics, international politics.

Long time user and developer of computer and statistical applications

Host of Open Source Technology in Higher Education web site at http://dmwiig.net

Creator and moderator of LinkedIn discussion forum “Open Source Technology in Higher Education”

Regular contributor to several LinkedIn discussion forums

Author of numerous tutorials on using the R statistical programming language and Raspberry Pi computer

R Tutorial: A Script to Create and Analyze a Simple Data File, Part One


R Tutorial: A Simple Script to Create and Analyze a Data File, Part One

By D.M. Wiig

In this tutorial I will walk you through a simple script that will show you how to create a data file and perform some simple statistical procedures on the file. I will break the code into segments and discuss what each segment does. Before starting this tutorial make sure you have a terminal window open and open R from the command line.

The first task is to create a simple data file. Let’s assume that we have some data from 10 individuals measuring each person’s height and weight. The data is shown below:

Height(inches) Weight(lbs)

72               225

60               128

65               176

75               215

66               145

65               120

70               210

71               176

68               155

77               250

We can enter the data into a data matrix by invoking the data editor and entering the values. Please note that the lines of code preceded by a # are comments and are ignored by R:

#Create a new file and invoke the data editor to enter data

#Create the file Sampledatafile, height and weight of 10 s subjects

Sampledatafile <-data.frame()

Sampledatafile <-edit(Sampledatafile)

You will see a window open that is the R Data Editor. Click on the column heading ‘var1’ and you will see several different data types in the drop down menu. Choose the ‘real’ data type. Follow the same procedure to set the data type for the second column. Enter the data pairs in the columns, with height in the first column and weight in the second column. When the data have been entered click on the var1 heading for column 1 and click ‘Change Name.’ Enter ‘Height’ to label the first column. Follow the same steps to rename the second column ‘Weight.’

Once both columns of data have been entered you can click ‘Quit.’ The datafile ‘Sampledatafile’ is now loaded into memory.

To run so me basic descriptive statistics use the following code:

> #Run descriptives on the data

> summary(Sampledatafile)

The output from this code will be:

  Height                Weight

Min. :60.00          Min. :120.0

1st Qu.:65.25        1st Qu.:147.5

Median :69.00        Median :176.0

Mean :68.90          Mean :180.0

3rd Qu.:71.75        3rd Qu.:213.8

Max. :77.00          Max. :250.0

>

To view the data file use the following lines of code:

>#print the datafile ‘Sampledatafile’ on the screen

> print(Sampledatafile)

You will see the output:

Height          Weight

1 72             225

2 60             128

3 65             176

4 75             215

5 66             145

6 65             120

7 70             210

8 71             176

9 68             155

10 77            250

In Part Two I will discuss an R script to do a simple correlation and scatter diagram.  Check back later!